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Fluctuations of the winding number of a directed polymer in a random medium
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For a directed polymer in a random medium lying on an infinite cylinder that is in 111 dimensions with
finite width and periodic boundary conditions on the transverse direction, the winding number is simply the
algebraic number of turns the polymer does around the cylinder. This paper presents exact expressions of the
fluctuations of this winding number due to, first, the thermal noise of the system and, second, the different
realizations of the disorder in the medium.
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INTRODUCTION

A directed polymer in a random medium is one of t
most simple non-trivial disordered system and is, as such
special theoretical importance. Indeed, several exact re
on directed polymers with strong disorder have been
tained@1–5#, so that general approximation schemes dev
oped to tackle more complicated disordered systems suc
spin glasses could be tested within the directed polymer c
text. The directed polymer is also relevant in the context
nonequilibrium phenomena, as it is related, through sim
changes of variables, to growth models governed by
Kardar-Parisi-Zhang~KPZ! equation@6,7# and to nonturbu-
lent flows such as the asymmetric exclusion process~ASEP!
model @2,7#.

The objective of this paper is to study the winding of
directed polymer lying on the surface of a cylinder. The
gebraic number of turnsW the polymer does around the cy
inder is a random variable which depends on the realiza
of the disorder and which fluctuates because of the ther
noise. The statistics of the winding number of a polymer
an homogeneous medium in 211 dimensions around a cyl
inder goes back to the work of Spitzer@8# and is relevant for
the physics of vortices in type II superconductors@9–11#. In
physical situations, the system is, however, usually dis
dered; the effect of columnar defects has been studied
lytically @11#, and the winding number around a cylinder o
polymer in a random medium with point-like disorder in
11 dimension has been explored numerically@9,10#. When
there is an attractive interaction between the polymer and
winding center, the polymer can be confined around the
inder and the system can be regarded as a polymer in t
11 dimension with periodic boundary conditions. In th
situation, the present work gives exact expressions for
statistics of the winding number.

The directed polymer on a cylinder is also related to
classical limit of strongly correlated fermions in one dime
sion with disorder~Luttinger liquids!: the x position of the
directed polymer corresponds to the phase of the fermio
and the phase has, of course, periodic boundary conditi
The winding number of the polymer corresponds to the d
sity of fermions. Disorder, while periodic in both cases, do
not have exactly the same correlations, but the models
sufficiently similar to hope for some universality@12,13#.

A first result of the present paper states that the ther
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fluctuations of the winding number are simply equal to wh
one would obtain for a directed polymer in a homogeneo
medium; disorder is simply averaged out. A second res
concerns the thermal-averaged winding numberW̄. Because
of the randomness of the medium, this quantity is not z
and the expression of its variance^W̄2& averaged over disor
der is obtained.

The present paper is organized as follows: Section I i
brief recall of how the directed polymer in a random mediu
can be mapped to a quantum mechanical problem of in
acting bosons using the replica method, and how this qu
tum mechanical problem can be solved with the Bethe an
@1,14,2–4#. In Sec. II the winding number is introduced an
defined and the two main results of this paper are state
Eqs. ~19! and ~21!. Section III gives the main lines of the
derivation, and, finally, technical points are developed in
three appendixes.

I. DEFINITION, NOTATIONS, AND FREE ENERGY
OF A DIRECTED POLYMER

Let us consider a directed polymer in 111 dimensions
where the dimension in which the polymer is directed~the
‘‘time’’ dimension! is taken to be very large and the tran
verse dimension~the ‘‘space’’ dimension! has width 1 and
periodic boundary conditions. As it is directed, the polym
can be described by a single-valued functiony(t) and the
partition function of a directed polymer of lengtht ending at
positionx is given by

Z~x,t !5E
y~ t !5x

Dy~s!

3expS 2E
0

t

dsF1

2 S dy

dsD
2

1h„y~s!,s…G D , ~1!

whereh(x,t) is the contribution by the random medium
the energy of the system. Disorder in the medium is assum
to be characterized by an uncorrelated Gaussian nois
varianceg :

^h~x,t !&50,

^h~x,t !h~x8,t8!&5gd~x2x8!d~ t2t8!, ~2!

where the bracketŝ& represent the average over disorder
©2003 The American Physical Society01-1
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It is a well known result@1,14,2–4# that this system can
be successfully mapped to a quantum mechanical prob
using the replica method; indeed, if we define

c~xW ;t !5c~x1 ,...,xn ;t !5
^Z~x1 ,t !¯Z~xn ,t !&

^Z~ t !&n , ~3!

where

Z~ t !5E dxZ~x,t ! ~4!

is the full partition function, then Eqs.~1! and ~2! imply

]c

]t
5

1

2 (
i 51

n
]2c

]xi
2 1g(

i , j
d~xi2xj !c, ~5!

with periodic boundary conditions on all the space variab
xi :

c~ ...,xi50,...;t !5c~ ...,xi51,...;t !. ~6!

The normalization bŷZ&n in Eq. ~3! is just a simple way to
get rid of a low-scale divergence introduced by the conti
ous description~1! of the system. In other words, withou
this normalization, there would be a trivial extra term in E
~5! involving the lattice size of an underlying discrete form
lation of the problem.

For an infinitely long polymer, that is, in the larget limit,
the amplitude ofc(xW ;t) is given by the fastest growing mod
of Eqs. ~5! and ~6!. In quantum mechanical language, w
have

lim
t→`

lnc~xW ;t !

t
5 lim

t→`

ln*dx1¯dxnc~xW ;t !

t

5 lim
t→`

ln^Z~ t !n&2n ln^Z~ t !&
t

52E~n,g!, ~7!

whereE(n,g) is the ground-state energy of the Hamiltoni

H52
1

2 (
i 51

n
]2

]xi
22g(

i , j
d~xi2xj !, ~8!

which describesn particles withattractived interactions on a
ring of size 1.

The same Hamiltonian with a negative value ofg ~that is,
with a repulsivedelta interaction! has been much studied t
determine the spectrum of a gas of bosons@15–20#. In that
context, using the Bethe ansatz@21#, it was shown that the
ground-state energy of Eq.~8! can be written as

E~h,g!52
1

2 (
a51

n

la
2, ~9!

where the$la% are solutions of
04110
m
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ela5 )
1<b<n

bÞa

la2lb1g

la2lb2g
with lim

g→0
la50. ~10!

Of course, this expression obtained forg,0 remains valid in
the directed polymer context whereg.0.

In the quantum mechanical problem~8!, the ground state
energyE(n,g) is well defined only for integraln; after all,n
is the number of particles. However, for the directed po
mer, ^Zn&, which is related toE(n,g) through ~7!, can be
defined for arbitrary values ofn. The small-n limit is of
special importance here: as the directed polymer is a di
dered system, the free energy is a random variable and^Zn&
is the generating function of this free energy. Indeed,
have

ln^Zn&
t

5n
^ ln Z&

t
1

n2

2

^ ln2Z&c

t
1

n3

6

^ ln3Z&c

t
1O~n4!,

~11!

where^ ln Z&/t, ^ ln2Z&c /t5(^ln2Z&2^ln Z&2)/t, etc., are the cu-
mulants of the free energy per unit length of the direc
polymer. Thus, if we can generalize Eqs.~9! and ~10! to
arbitrary values ofn, the expansion ofE(n,g) for small n
gives, using Eq.~7!, the distribution of the free energy of th
directed polymer@22#.

This method was used@1# for the directed polymer on a
space of infinite width in thex direction. The Bethe ansat
equations are then much simpler than Eq.~10! and one ob-
tains @23,1#, when n is an integer,E(n,g)5g2(n2n3)/24.
This result was used to argue that only the two cumula
^ ln Z&/t and ^ ln3Z&c /t do not vanish in the larget limit and
that, therefore, the fluctuations of lnZ scale liket1/3 @24–26#.

When space has finite width, however, it is easy to
that the free energy is an extensive function and that all
cumulants scale liket. In two previous papers@3,4# we
solved the Bethe ansatz equations~10! and computed the
three first terms of the smalln expansion ofE(n,g). Up to
the ordern2, the result is

E~n,g!5nS g

2
1

g2

24D2
n2g3/2

4&
E

0

1`

dl
l2e2l2/2

tan
lAg

2&

1O~n3!,

~12!

so that, using Eq.~7!,

lim
t→`

^ ln Z&2 ln^Z&
t

52S g

2
1

g2

24D , ~13!
1-2
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lim
t→`

^ ln2Z&c

t

5
g3/2

2&
E

0

1`

dl
l2e2l2/2

tanh
lAg

2&

5g1
g2

12
2

g3

360
1

g4

5040
1O~g5! for small g

5
Apg3/2

4
14z~3!1OS 1

g D for large g, ~14!

wherez(3)5(k23'1.20206.

II. WINDING NUMBER OF THE DIRECTED POLYMER

An important topological property of a directed polym
is its winding numberW, that is the algebraic number of fu
turns the polymer makes around the cylinder on which
lays. One way to define this winding number is to increaseW
by one for each ‘‘time’’t where thex coordinate of the poly-
mer goes from 12 to 01 and decreaseW by one whenx goes
from 01 to 12. Another way is to unroll thex coordinate and
setW5* ẋdt. Of course, the differences between those t
definitions smear out in the larget limit.

As for any quantity in a disordered system at finite te
perature, the winding numberW fluctuates for two distinct
reasons. One is the thermal fluctuations: for a given real
tion of the disorder and at finite temperature, the direc
polymer fluctuates around the path with the lowest ene
and those fluctuations may change the winding numbe
the polymer. The other source of fluctuations is the quenc
disorder on the medium.

In this work, a horizontal bar is used to denote the therm
average, which is the average computed over all the poss
directed polymers counted with their Boltzmann weigh
The cumulants are noted with an extrac subscript:W̄ is the
thermal average ofW, and(Wk)c the kth thermal cumulant
of W, with (W2)c5W22W̄2, (W3)c5W323W̄W212W̄3,
etc. These thermal averages and cumulants are calculate
a given, fixed, realization of the disorder and usually dep
on that realization.

The average and cumulants of a quantityQ computed
over all the realizations of the disorder are written w
brackets: ^Q& is the average ofQ computed over all real-
izations of the disorder, and̂Qk&c is thekth disorder cumu-
lant of Q.

It is worth noting that, for a given realization of the di
order, the thermal averageW̄ of the winding number isnot
zero; the disorder breaks the symmetry and may favor
orientation over the other. However,W̄ is an extensive quan
tity and, if we imagine that we cut an extremely long pol
mer in many very long sections, all the sections are ne
independent andW̄ may be regarded as the sum of uncor
lated random variables. Therefore,
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t→`

W̄

t
5 lim

t→`

^W̄&
t

50. ~15!

This property thatW̄ approacheŝW̄& in the larget limit is
known as ‘‘auto averaging.’’ Likewise, all the thermal cum
lants of W ~which are also extensive quantities! share the
same property,

lim
t→`

~Wk!c

t
5 lim

t→`

^~Wk!c&
t

. ~16!

Those cumulants, which characterize the thermal fluctuati
of a directed polymer’s winding number, depend on the
alization of the disorder only when the lengtht of the poly-
mer is finite.

Other quantities of interest are the disorder cumulants
the thermal average of the winding number of the polym
Indeed, the quantityW̄ depends on the realization of th
disorder, and its fluctuations are characterized by anothe
ries of cumulants:

lim
t→`

^W̄k&c

t
, ~17!

with ^W̄2&c5^W̄2&2^W̄&2, etc. Actually, we might be inter-
ested in computing many quantities characterizing the wi
ing number, such as

lim
t→`

^~W2!2&2^W2&2

t
, ~18!

which represents the fluctuations due to the disorder of
thermal-mean square of the winding number, per unit leng

A first result of the present paper is

lim
t→`

^~W2!c&
t

51 and lim
t→`

^~Wk!c&
t

50 for kÞ2.

~19!

In other words, thermal fluctuations of the winding numbe
are Gaussian and independent of the disorderg. For an infi-
nitely long polymer, the thermal fluctuations of the windin
number of the polymer behave as if the directed polymer w
simply doing a random walk in a disorder-less environme

A second result of the present paper is

lim
t→`

^W̄2&c

t
5 lim

n→0
F 2

n2 S ]E~n,g!

]g
2

2

g
E~n,g! D1

1

n
21G

5211S 2

g
2

]

]g D lim
t→`

^ ln2Z&c

t
, ~20!

where E(n,g) is the ground state energy of the quantu
problem computed in@3,4# and given in Eq.~12!. Therefore,
1-3
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lim
t→`

^W̄2&c

t
5

Ag

& S E
0

1`

dl
l2e2l2/2

tanh
lAg

2&

2
1

4 E0

1`

dl
l4e2l2/2

tanh
lAg

2&
D 21

5
Apg

8
211

8z~3!

g
1O~g22! for large g

5
g2

360
2

g3

2520
1

g4

16800
1O~g5! for small g

~21!

@wherez(3)5(k23'1.202 06].
The expression~1! of the directed polymer’s free energ

is written with dimensionless variables. If we explicitly p
back physical constants and use the following express
instead of~1!:

Z~x,t !5E
y~ t !5x

Dy~s!expH 2bE
0

t

ds

3Fk2 S dy

dsD
2

1h„y~s!,s…G J , ~22!

where b5(kBT)21 is the inverse of temperature,k is the
rigidity modulus of the line and where the spatial dimens
x has finite widthw and periodic boundary conditions, the
Eqs.~19! and ~21! become

lim
t→`

^~W2!c&
t

5
1

bkw2 ,

lim
t→`

^~Wk!c&
t

50 for kÞ2,

lim
t→`

^W̄2&c

t
5

1

bkw2 F~b3kwg!, ~23!

where F(g) is the scaling function given in Eq.~21!. We
obtain the following expansions:

lim
t→`

^W̄2&c

t
'

Apbg

8Akw3/2
at low temperature

'
b5kg2

360
at high temperature. ~24!
04110
n

III. DERIVATION OF EQS. „19… AND „20…

A. Equivalence to a quantum mechanical problem

To obtain both results~19! and ~20!, we define a new
partition functionZz(x,t), the purpose of which is to coun
the winding number of the polymer:

Zz~x,t !5E
y~ t !5x

Dy~s!

3e2@energy of pathy~s!#1z~winding number of that path!.

~25!

The sum is made over all the directed polymers ending inx,
and the ‘‘energy of a path’’ is the same as in Eq.~1!.

Clearly,Zz(t)5*Zz(x,t)dx is related to the winding num
ber W by

Zz~ t !5Z0~ t !ezW. ~26!

If we define the winding numberW as an integer tha
changes by61 each time the directed polymer wraps arou
the domain by crossing thex50 or x51 boundary, then the
boundary conditions forZz is

Zz~0,t !5ezZz~1,t !. ~27!

Apart from that, the equations satisfied byZz(x,t) are the
same as the equations satisfied byZ(x,t). In particular, if we
define

cz1 ,...,zn
~x1 ,...,xn ;t !5

^Zz1
~x1 ,t !¯Zzn

~xn ,t !&

^Z0~ t !&n , ~28!

this new wave functionc is also a solution of Eq.~5!; only
the boundary conditions are changed: instead of Eq.~6!, the
new conditions read

cz1 ,...,zn
~x1 ,...,xi50,...,xn ;t !

5ezicz1 ,...,zn
~x1 ,...,xi51,...,xn ;t !. ~29!

Thus, as in Eq.~7!, the long ‘‘time’’ t behavior ofZz(t) is
given by

lim
t→`

ln^Zz1
¯Zzn

&2n ln^Z0&

t
52E~n,g;z1 ,...,zn!,

~30!

where E(n,g;z1 ,...,zn) is the ground state energy of th
same Hamiltonian~8! as before, but with the new boundar
conditions~29!.

This new ground state energyE contains all the informa-
tion on the winding numberW. For instance, from Eq.~26!,
and by definition of the cumulants, we have, fork.0,

~Wk!c5
]k

]zk ln Zz~ t !U
z50

. ~31!
1-4
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^ ln Zz& is easily obtained from Eq.~30!: we set all the$zi% to
one single valuez, make a smalln expansion, and retain onl
the first order. We get

lim
t→`

^~Wk!c&
t

52 lim
n→0

]k

]zk

]

]n
E~n,g;z,...,z!U

z50

. ~32!

Getting W̄2 is more tricky. We would need (] ln Zz/]z)2,
but that quantity can only be obtained from Eq.~30! if the
parameters$zi% take at least two different values. For e
ample, we have

lim
n→0

^Zz1
Zz

n21&5K Z0~11z1W̄1O~z1
2!!

Z0~11zW̄1O~z2!!
L ,

511~z12z!^W̄&2zz1^W̄
2&1O~z1

2!1O~z2!,

~33!

and

lim
n→0

ln^Zz1
Zz

n21&5~z12z!^W̄&2zz1~^W̄2&2^W̄&2!1O~z1
2!

1O~Z2!. ~34!

Therefore, putting all the pieces together,

lim
t→`

^W̄2&2^W̄&2

t
5 lim

n→0

]2

]z]z1
E~n,g;z1 ,z,...,z!U

z50
z150

.

~35!

Finally, to obtain the results announced, we need to comp
E(n,g;z,...,z) and, to the first order inz and z1 ,
E(n,g;z1 ,z,...,z).

B. Determination of E„n,g;z,...,z…

When all the parameters$zi% are equal to one single valu
z, the problem is easy: all the replica play a symmetric ro
so that the ground state eigenvectorcz,...,z(x1 ,...,xn) of the
Hamiltonian~8! is a symmetric function of all the$xi%. As
shown in Appendix A, the standard Bethe ansatz deriva
gives the result. Instead of Eqs.~9, 10!, we get

E~n,g;z,...,z!52
1

2 (
a51

n

la
2 , ~36!

where the$la% are solutions of

ela1z5 )
1<b<n

bÞa

la2lb1g

la2lb2g
with lim

g→0
z→0

la50. ~37!

If we define

l̃a5la1z ~38!
04110
te

,

n

then the$l̃a% are clearly solutions of the standard Bet
ansatz equations~10!. Using Eq.~36!, we obtain

E~n,g;z,...,z!5E~n,g!2
n

2
z2. ~39!

E(n,g)5E(n,g;0,...,0) is the ground state energy~12! be-
fore introduction of the$zi%. We have used(l̃a50, which
can be easily deduced@3,4# from Eq. ~10!.

Using Eq.~32!, the result~19! on the thermal cumulants
of the winding number is then immediate. This metho
based on a Bethe ansatz, is not the simplest way to ob
~19!. Indeed, the result could be obtained using thestatistical
tilt symmetry@27,28# of the problem; we define the windin
numberW of a pathy(s) as being simply the unrolled coor
dinate:

W5E
0

t

ds
dy

ds
. ~40!

~This new definition is, of course, equivalent to the previo
one in the larget limit.! The change of variabley(s)5 ỹ(s)
1zs in the definition~25! of Zz gives then

Zz~ t !5ez2/2E Dỹ~s!

3expH 2E
0

t

dsF1

2 S dỹ

dsD
2

1h„ỹ~s!1zs,s…G J .

~41!

Clearlyh„ỹ(s)1zs,s… have the same statistical properties
h„ỹ(s),s… and one gets

^ ln Zz~ t !&5
z2

2
1^ ln Z0~ t !&, ~42!

from which the result~19! is straightforward. The first deri-
vation with the Bethe ansatz was included here as it dem
strates part of the method used to obtain the second re
~20!, which cannot be derived from astatistical tilt symmetry
argument

C. Determination of E„n,g;z1 ,z,...,z…

When the parameters$zi% are not identical, the wave
functionc is no longer a symmetric function of the$xi% and
the problem is much more complicated. Therefore, the s
dard bosonic Bethe ansatz used in the previous case will
work. However, as shown in Appendix B, using a more ge
eral Bethe ansatz that was first introduced to deal with n
bosonic particles@29,30,31#, we get the following result:

E~n,g;z1 ,z,...,z!52
1

2 (
a51

n

la
2, ~43!

where the$la% are solutions of
1-5
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ela1za5 )
1<b<n

bÞa

la2lb1g

la2lb2g
with lim

g→0
z→0

la50, ~44!

and where the$za% are such that

ez)
b51

n Feza1
la2lb

g
~ez2eza!G

5ez1 )
b51

n Fez1
la2lb

g
~ez2eza!G ,

lim
$zi %→0

za50. ~45!

When z15z, we recoverza5z, the result of the previous
section.

To determine the fluctuation̂W̄2& of the winding number
of the polymer, we only need to computeE(n,g;z1 ,z,...,z)
to the second order in the$zi%. From Eq.~45!, we easily get

za5
z11~n21!z

n
2

nla2(k51
n lk

gn3 ~z12z!21O~$zi%
3!.

~46!

We define, for alla,

l̃a5la1za ,

5laS 12
~z12z!2

gn2 D1
z11~n21!z

n
1

(k51
n lk

gn3 ~z12z!2,

~47!

and

g̃5gS 12
~z12z!2

gn2 D . ~48!

Using those new variables into Eq.~44!, we obtain the fa-
miliar Bethe ansatz equations:

el̃a5 )
1<b<n

bÞa

l̃a2l̃b1g̃

l̃a2l̃b2g̃
1O~$zi%

3!, ~49!

so that@3,4#, using the ground state energyE(n,g) given by
Eq. ~12!,

(
a51

n

l̃a
2522E~n,g̃ !1O~$zi%

3! and (
a51

n

l̃a5O~$zi%
3!.

~50!

From there, using Eq.~47!, one can write(la
2. We finally

get
04110
E~n,g;z1 ,z,...,z!

5E~n,g!2
1

2

@z11~n21!z#2

n

1
1

n2 F2

g
E~n,g!2

]E~n,g!

]g G~z12z!21O~$zi%
3!.

~51!

Then, finally, from Eq.~35!, we get the announced resu
~20!.

CONCLUSION

Using the replica method with the directed polymer, o
obtains a bosonic quantum mechanical problem which
be solved by the Bethe ansatz. By extending this method
using a more general Bethe ansatz that was introduce
deal with nonbosonic particles@29#, it has been shown how
the different quantities characterizing the fluctuations of
directed polymer’s winding number can be computed us
new Bethe ansatz equations. Building upon a previous w
@3,4#, those equations were explicitly solved in two cas
giving the results~19! and ~20!, ~21!. The second result is
particularly interesting as it simply relates through Eq.~20!
the fluctuations of the thermal-averaged winding number
the fluctuations of the free energy of the directed polymer
would be interesting to understand this relation in a m
direct way.

In principle, the method presented in the present pa
should allow us to compute more cumulants of the wind
number and, eventually, its complete probability distributio
For that, however, one needs, as a first step, to generalize
~51! and write the expansion ofE(n,g;z1 ,z,...,z) to higher
orders in the$zi%. Indeed, one can show that, for example

lim
t→`

^W3W̄&23^W2&^W̄2&
t

5 lim
n→0

]4

]z]z1
3 E~n,g;z1 ,z,...,z!U

z50
z150

. ~52!

ObtainingE(n,g;z1 ,z,...,z) to the fourth order in the$zi% is
not, however, an easy task, as the trick used in Eq.~47!
would not work at that order.

As a second step, to compute more complicated cum
lants of the winding number such as^W̄4&23^W̄2&2, one
needs to generalize Eqs.~43!–~45! to the case where the$zi%
take at least four different values. Higher order cumula
would require, of course, the energy of the system with m
different values of the$zi%. A matrix approach such as th
one developed in the present paper could lead to the re
Another possibility might be to try an approach similar to t
‘‘nested Bethe ansatz’’ method developed by Yang and Su
erland@29–31,1,5# to compute the ground-state energy of t
system described by the Hamiltonian~8! with different types
of particles and symmetry relations which depend on
type of particles. Their results are not directly applicable
1-6
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the directed polymer’s winding number as all the partic
have the same symmetry relations but different bound
conditions, but it might be worth investigating if the nest
Bethe ansatz could be adapted.
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APPENDIX A: BETHE ANSATZ EQUATIONS WHEN ALL
THE zi HAVE THE SAME VALUE z

When all the$zi% are equal toz, all the particles have
symmetric roles and the standard bosonic Bethe ansatz l
to the result. To recall the standard derivation@15,17#, we
look for solutions of the following form:

cz,...,z~x1 ,...,xn!5(
s

a~s!e( i 51
n ls~ i !xt~ i !, ~A1!

where the sum is made over then! permutationss of $1,...,n%
and wheret is the permutation defined by

xt~1!,xt~2!,¯,xt~n! . ~A2!

The n! amplitudes$a(s)% and then pseudo-wave-number
$la% are unknown variables to be determined.

We use this expression ofc in Hc5Ec, whereH is the
Hamiltonian~8!. In the regions where all the$xi% are differ-
ent, it is straightforward to get

E~n,g;z,...,z!52
1

2 (
a51

n

la
2, ~A3!

so that we only need to determine the$la%. At each crossing
of two particles, we have to ensure the correct discontinui
in the derivatives ofc to compensate for thed functions in
H. This gives the following conditions, for alls and all 1
<k,n:

a~s+Tk!5
ls~k!2ls~k11!2g

ls~k!2ls~k11!1g
a~s!, ~A4!

where Tk is the permutation that swapsk and k11 and
leaves all the other integers unchanged.

As any permutations can be written as a product of th
elementary permutationsTk , one can use Eq.~A4! to write
all the $a(s)% up to an arbitrary multiplicative factor. How
ever, as the decomposition of a permutations as a product of
Tk is not unique, one must check that the (n21)n! equations
~A4! are self-consistent. The best way to do that is to w
down explicitly the solution

a~s!5 )
1<a,b<n

ls~a!2ls~b!1g

ls~a!2ls~b!
. ~A5!

It is easily checked that this is indeed the solution of all E
~A4!.
04110
s
ry

d
-

ds

s

e

.

So, for any set of values$la%, the wave function~A1!
where the$a(s)% are given by~A5! is an eigenvector of the
Hamiltonian~8!. The values of the$la% can then be obtained
from the boundary conditions~29!. One gets

a~s!5ez1ls~1!a~s+C!, ~A6!

where C is the circular permutationC(1)52, C(2)
53,...,C(n21)5n, C(n)51. Using Eq.~A5!, we easily get
the new Bethe ansatz equations. For alla,

ela1z5 )
1<b<n

bÞa

la2lb1g

la2lb2g
. ~A7!

We are only interested in the ground-state solution.
continuity of this ground state, we get the last condition

lim
z→0
g→0

la50. ~A8!

APPENDIX B: BETHE ANSATZ EQUATIONS WHEN ALL
THE ˆzi‰ EXCEPT z1 HAVE THE SAME VALUE z

When the parameters$zi% do not take the same valuez,
the computation of the energyE is more complicated; indeed
the wave functionc is no longer a symmetric function of th
$xi% and there is no way that the standard Bethe ansatz~A1!
might lead to the result.

However, in order to study the Hamiltonian~8! for fermi-
onic particles or, more generally, for particles with arbitra
symmetries and anti-symmetries, a more general ansatz
~A1! has been proposed@29,30,1,5#: in Eqs.~A1! and ~A2!,
the permutationt is only introduced as a convenient way
get the coordinates$xi% of the n particles sorted from the
leftmost particle to the rightmost in the expression of t
wave function. An easy way to break the symmetry ofc is to
make the parameters$a(s)% explicitly dependent on the per
mutationt :

cz1 ,...,zn
~x1 ,...,xn!5(

s
a~t,s!e( i 51

n ls~ i !xt~ i !, ~B1!

where the permutationt is, as before, defined by Eq.~A2!.
As shown below, the solution to our problem with th

unusual boundary conditions~29! can also be written using
Eq. ~B1!. We first begin with the most general case where
the $zi% are different and, at some point, specialize to t
simpler case where all the$zi% exceptz1 are identical.

1. General Bethe Ansatz equations for arbitraryˆzi‰

Using the Ansatz~B1! in Hc5Ec whereH the Hamil-
tonian ~8!, we have, as usual,
1-7
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E~n,g;z1 ,...,zn!52
1

2 (
a51

n

la
2. ~B2!

The new equations for the parameters$a(t,s)% are more
complicated than~A4!,

a~t,s+Tk!5
~ls~k!2ls~k11!!a~t+Tk ,s!2ga~t,s!

ls~k!2ls~k11!1g
,

~B3!

for any permutationst ands and for any integer 1<k,n.
A convenient way to write the (n!) 2 parameters$a(t,s)%

is usingn! vectors indexed bys, each vector havingn! com-
ponents:

aW ~s!5S a~t1 ,s!

a~t2 ,s!

]

a~tn! ,s!

D , ~B4!

wheret1 ,...,tn! are then! permutations of$1,...,n% sorted in
an arbitrary way chosen once for all.~The order must, of
course, be the same for all values ofs.! We now introduce
the matricesMk defined by

S a~t1+Tk ,s!

a~t2+Tk ,s!

]

a~tn!+Tk ,s!

D 5MkaW ~s!. ~B5!

Those matricesMk just shuffle the components of the vect
aW (s); there is thus exactly one ‘‘1’’ per raw and per colum
and all the other components are ‘‘0.’’ In a concise way,
can writeMk as

~Mk! i , j5dt i

t j +Tk. ~B6!

The matricesMk are a representation of the permutatio
Tk . As such, they have the same standard commutation p
erties as the permutations:

Mk
25I , MkMk11Mk5Mk11MkMk11 ,

MkMk85Mk8Mk if uk2k8u.1 ~B7!

~I being the identity matrix!. Equation~B3! is then simply
written as

aW ~s+Tk!5Yk
s~k!,s~k11!aW ~s!, ~B8!

whereYk
i , j is the Yang-Baxter operator defined@29# by
04110
p-

Yk
i , j5

~l i2l j !Mk2gI

l i2l j1g
. ~B9!

It is clear from ~B8! that any vectoraW (s) can be obtained
from the knowledge of one of them. However, as in t
symmetric case, one has to check that the result does
depend on the way the permutations are decomposed
product of the elementary permutationsTk . There are no
explicit formula @32# such as~A5! of aW (s), but one can
check that the (n21)n! relations~B8! are indeed self com-
patible. This is implied by the following ‘‘Yang-Baxter’’ re-
lations @29#

Yk
i , jYk

j ,i5I ,

Yk
i , jYk8

i 8, j 85Yk8
i 8, j 8Yk

i , j if uk2k8u.1, ~B10!

Yk
i , jYk11

i ,l Yk
j ,l5Yk11

j ,l Yk
i ,lYk11

i , j ,

which can be easily checked using Eqs.~B7! and~B9!. With
the first of those three relations, using~B8! twice to compute
aW (s+Tk+Tk) gives correctlyaW (s). The second relation im-
plies aW (s+Tk+Tk8)5aW (s+Tk8+Tk) if uk2k8u.1 and, finally,
the third relation givesaW (s+Tk+Tk11+Tk)5aW (s+Tk11+Tk
+Tk11). It is a well known property of the symmetric grou
that those three necessary conditions are actually sufficie
ensure that the relations~B8! are self-consistent.

One still needs to write the boundary conditions~29! with
the parameters$a(t,s)%. From ~B1!, one gets

a~t,s!5exp~zt~1!1ls~1!!a~t+C,s+C!, ~B11!

whereC is, as in Eq.~A6!, the circular permutation.
As C5T1+T2+¯+Tn21 , the matrix that shuffles the line

of the vectorsaW (s) according to the permutationC is simply
the product of the matricesMk . Thus, we have

aW ~s!5exp~ls~1!!ZM1M2¯Mn21aW ~s+C!, ~B12!

whereZ is the diagonal matrix defined by

~Z! i , j5d i
j exp~zt i ~1!!. ~B13!

Moreover, using several times~B8!, we get, from the defini-
tion of C,

aW ~s+C!5Yn21
s~1!,s~n!Yn22

s~1!,s~n21!
¯Y1

s~1!,s~2!aW ~s!.
~B14!

Putting together~B12! and~B14!, we see thataW (s) must
be, for eachs, the eigenvector of some operator,
1-8
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exp~ls~1!!ZM1¯Mn21Yn21
s~1!,s~n!

¯Y1
s~1!,s~2!aW ~s!5aW ~s!.

~B15!

There exists a nonzeroaW (s) such as~B15! holds only for
certain values of the$la%. However, as then! vectors
$aW (s)% are not independent variables, we need to check
the n! relations~B15! are compatible: they must hold simu
taneously for the same values of the$la%. As explained in
Appendix C, this is the case. To obtain the values of the$la%
we are looking for, we use~B15! when s is the identical
permutation. A nonzeroaW (s) exists if and only if

det@ I 2exp~l1!ZM1¯Mn21Yn21
1,n Yn22

1,n21
¯Y1

1,2#50,
~B16!

or, using the properties~B10! of the operatorsY,

det~Y1
2,1Y2

3,1
¯Yn21

n,1 2exp~l1!ZM1¯Mn21!50,
~B17!

or, using the definition~B9! of the operatorsY,

detS )
a51

n21
~l12la11!Ma1gI

l11la112g
2exp~l1!Z)

a51

n21

MaD 50.

~B18!

That last equation relates exp(l1) to the $la%. There aren
21 other equations giving all the exp(lk) which we can
obtain either by using~B15! with different permutationss
either, as they play symmetric roles, by shuffling the$la% in
Eq. ~B18!.

Finally, the wave function~B1! introduced is indeed an
eigenvector of the Hamiltonian~8! with the boundary condi-
tions ~29!, provided that the$la% are such that~B18! and the
n21 other relations obtained by symmetry hold.

Note that the new Bethe ansatz equation~B18! can be
regarded as a polynomial of degreen! in exp(l1), so that we
have not one value of exp(l1) as a function of the$la%, but
n!. This could be expected, as the method we have use
known to generate, whenzi50, not only the bosonic solu
tion, but all the eigenvalues of Eq.~8! for arbitrary symmetry
relations between the particles. So, if we write from~B18!
the n! possible expressions of exp(l1) and make the$zi% go
to zero, we will recover the usual bosonic Bethe ansatz
lution ~10!, but also the fermionic solution exp(la)51 and all
04110
at

is

o-

the intermediate cases. In our problem, we are looking
the ground state energy of discernible particles and it
known, in this situation, that the ground state is given by
bosonic solution.

To sum up, what remains to be done is to single out fr
~B18! the expression of exp(l1) which goes to the standar
bosonic equations~10! when the$zi% vanish, to write by
symmetry the n21 remaining equations giving all th
$exp(la)% as functions of the$la%, to solve those nonalge
braic equations in order to write the ground state energE
52(1/2)(la

2, and, finally, to take the limitn→0 and vari-
ous derivatives with respect to thezi to obtain the different
quantities characterizing the winding number of the polym

As this seems to be a difficult task in the general case,
will go through this program only when all the$zi% have the
same valuez except forz1 .

2. Simplification when all the ˆzi‰ are equal except forz1

When all the $zi% are set to zero, the matrixZ is the
identity matrix and one of the solutions of Eq.~B18! must be
the standard bosonic Bethe ansatz equation~10!. One way to
see it is to notice that, when~10! holds, the vector which
cancels the matrix in Eq.~B18! is simply ~1,...,1!. Another
way to see it is to notice that to derive~B18!, we never
actually used the matrix representation ofMk , Yk

i , j , etc., but
only the commutation properties of those matrices. If
were to choose otherrepresentationsof those matrices hav
ing the same commutation properties, relation~B18! would
still be valid with those representations. For example, wh
all the $zi% are zero, the bosonic solution is obtained fro
Eq. ~B18! by choosing the trivial representationMk51. The
fermionic solution exp(la)51 is obtained by choosingMk
521, etc.

In the situation wherezi5z for i>2, with only z1 differ-
ent fromz, we can make a similar simplification. Indeed,
that case, the particlesx2 ,...,xn play symmetric roles. Thus
the ground state solution must be symmetric in those v
ables. Back to the wave function~B1!, this means that the
parametersa(t1 ,s) and a(t2 ,s) must be equal ift1

21(1)
5t2

21(1). In other words, the parametersa(t,s) do not
depend on the whole shufflingt of the particles$xi%, but
only on the position ofx1 relatively to the other; for eachs,
there is one value ofa(t,s) corresponding to the first par
ticle being the leftmost, another value when the first parti
is the second leftmost, etc.

This suggests that Eq.~B18! can be written in that situa
tion with a representation of theMk as matrices of sizen
3n instead ofn! 3n!. Indeed, we write the new vectoraW (s)
as
aW ~s!5S a~t,s! such thatt~1!51 ~x1 is the leftmost particle!
a~t,s! such thatt~2!51 ~x1 is the second leftmost particle!

]

a~t,s! such thatt~n!51 ~x1 is the rightmost particle!
D . ~B19!
1-9
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Then, the matrixMk that switches thekth and (k11)th par-
ticles is given by

~Mk! i , j5H d j
k11 if i 5k

d j
k if i 5k11

d i
j otherwise,

~B20!

that is,

M15S 0 1 0 0 ...

1 0 0 0 ...

0 0 1 0 ...

0 0 0 1 ...

... ... ... ... �

D ,

M25S 1 0 0 0 ...

0 0 1 0 ...

0 1 0 0 ...

0 0 0 1 ...

... ... ... ... �

D , ~B21!

etc. With all the$zi% but z1 equal toz, we can also write the
new matrixZ in this representation. It is a diagonal matri
on the first line we have exp(z1) as x1 is then the leftmost
particle, and, on the other lines, we do not know which p
ticle is the leftmost, but it is of no importance as we know
is not x1 and as all the other particles have the same par
eterz. Thus, we have

Z5S ez1 0 0 ...

0 ez 0 ...

0 0 ez ...

... ... ... �

D . ~B22!

Of course, the new matricesMk have the correct commuta
tion relations~B7! and the final result~B18! is still valid with
the new matricesMk andZ.

3. Explicit expression of the determinant

When zi5z for i>2, using the new matricesMk and Z,
we can compute the determinant in~B18! by induction. First,
we normalize exp(l1) by the standard Bethe ansatz expre
sion and write

el11z15 )
a52

n
l12la1g

l12la2g
, ~B23!

wherez1 is the quantity we are trying to determine.
Using this new variable, we write the determinant

~B18!, up to a multiplicative prefactor, as

dn5det@An2exp~2z1!Bn#, ~B24!

where
04110
-
t

-

-

An5 )
a51

n21
~l12la11!Ma1g

l12la111g
~B25!

and, as can easily be seen,

Bn5Z)
a51

n21

Ma5S 0 0 ... 0 ez1

ez 0 ... 0 0

0 ez ... 0 0

... ... � ... ...

0 0 ... ez 0

D . ~B26!

As ez1 appears only once in the matrix, the determinantdn
can be written as

dn5an2ez1bn , ~B27!

wherean andbn do not depend onz1 .
Going fromAn to An11 is easy enough; singling out th

last term in the product~B25!, one has

An115S ]

An 0

]

... 0 ... 1

D
3S 1

� ~0!

1

~0! mn11 12mn11

12mn11 mn11

D ,

~B28!

with

mn115
g

l12ln111g
. ~B29!

Doing this last multiplication, we see that the firstn21 col-
umns ofAn11 are the first columns ofAn padded with one
final zero, and that thenth and (n11)th columns ofAn11
are thenth column ofAn with different multiplicative factors
~respectively,mn11 and 12mn11) and different paddings
~respectively, 12mn11 and mn11 .) Thus, if we develop
dn11 over the last line, there are only two terms which lo
very much likedn . The only differences are that the la
column is multiplied by some factor and that the termez1 is
either missing or not multiplied by the numerical factor th
affects its column. Finally, using~B27!, one can get

dn115mn11~mn11an!

2~12mn112ez2z1!@~12mn11!an2bnez1#,

~B30!

or
1-10
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an115@2mn11211~12mn11!ez2z1#an ,

bn1152~12mn112ez2z1!bn ~B31!

with a151 andb15exp(2z1). It is now easy to computean
andbn ,

an5)
i 52

n
~l12l i !~ez2z121!1g

l12l i1g
,

bn5e2z1)
i 52

n
~l12l i !~ez2z121!1gez2z1

l12l i1g
, ~B32!

and, finally, the condition that the determinant~B18! is zero
gives the following result:

ez)
i 51

n F11
l12l i

g
~ez2z121!G

5ez1)
i 51

n Fez2z11
l12l i

g
~ez2z121!G .

~B33!

As all the $la% play symmetric roles, this is exactly th
result announced~45!.

APPENDIX C: PROOF THAT EQ. „B15… CAN BE
SATISFIED SIMULATANEOUSLY FOR ALL

PERMUTATIONS s

To prove Eq.~B15! are indeed compatible, we start b
assuming that the$aW (s)% are such that~B8! holds for anys
andk. As a consequence, Eq.~B14! is true for any permuta-
tion and~B15! is equivalent to~B12!.

Furthermore, we assume that Eq.~B15! @or ~B12!# is true
for a given permutations. To show that it is also true for an
other permutation, it is sufficient, by induction, to prove th
Eq. ~B15! @or Eq. ~B12!# holds fors+Tk with 1<k,n.

It is necessary to distinguish the two caseskÞ1 and k
51.

The case1,k,n. When kÞ1, we have the following
properties:

Tk+C5C+Tk21 , Yk
i , jZ5ZYk

i , j ,

Yk
i , jM1M2¯Mn215M1M2¯Mn21Yk21

i , j . ~C1!

The first relation is a basic property of permutations,
second relation comes from the fact thatYk

i , j does not change
the value oft~1!, and the third one, considering the definitio
~B9! of Yk , is a rewriting of the first relation in the matri
representation.

We can now show that~B12! and, therefore,~B15! holds
for s+Tk ,
04110
t

e

aW ~s+Tk!5Yk
s~k!,s~k11!aW ~s!

5Yk
s~k!,s~k11! exp~ls~1!!ZM1M2¯Mn21aW ~s+C!

5exp~ls~1!!ZM1M2¯Mn21Yk21
s~k!,s~k11!aW ~s+C!

5exp~ls~1!!ZM1M2¯Mn21aW ~s+C+Tk21!

5exp~ls~1!!ZM1M2¯Mn21aW ~s+Tk+C!. ~C2!

As s(1)5s+Tk(1) for kÞ1, this is indeed~B12! applied to
the permutations+Tk .

When k51. Equation~B15! express thataW (s) is an eigen-
vector of

A5ZM1¯Mn21Yn21
s~1!,s~n!

3Yn22
s~1!,s~n21!

¯Y2
s~1!,s~3!Y1

s~1!,s~2! , ~C3!

and we want to prove thataW (s+T1) is also an eigenvector o

ZM1¯Mn21Yn21
s~2!,s~n!Yn22

s~2!,s~n21!
¯Y2

s~2!,s~3!Y1
s~2!,s~1! .

~C4!

As aW (s+T1)5Y1
s(1),s(2)aW (s), this is equivalent to prove tha

aW (s) is an eigenvector of

B5Y1
s~2!,s~1!ZM1¯Mn21

3Yn21
s~2!,s~n!Yn22

s~2!,s~n21!
¯Y2

s~2!,s~3! . ~C5!

~The relationYk
i , jYk

j ,i5I has been used twice.!
To conclude, we presently show thatAB5BA, which im-

plies that A and B have the same eigenvectors. First, w
define another diagonal matrixZ2 by

~Z2! i , j5d i
j exp~zt i ~2!!. ~C6!

@Compare with Eq.~B13!.# Clearly, we have

M1Z5Z2M1 and M1Z25ZM1 . ~C7!

Moreover, as a consequence, the productZZ25Z2Z com-
mutes withM1 andY1 .

When computingAB, two matricesY1 cancel out. The
matrix Z commutes with all theYk and all theMk exceptY1
andM1 , so that we can ‘‘move’’ the secondZ to the left and
obtain

AB5ZS) Mi DYn21
s~1!,s~n!

¯Y2
s~1!,s~3!Z

3S) Mi DYn21
s~2!,s~n!

¯Y2
s~2!,s~3! ,

5ZZ2S) Mi DYn21
s~1!,s~n!

¯Y2
s~1!,s~3!

3S) Mi DYn21
s~2!,s~n!

¯Y2
s~2!,s~3! . ~C8!

When computingBA, the second matrixZ can also travel to
the left; we get
1-11
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BA5Y1
s~2!,s~1!ZS) Mi DYn21

s~2!,s~n!
¯Y2

s~2!,s~3!Z

3S) Mi DYn21
s~1!,s~n!

¯Y1
s~1!,s~2!

5Y1
s~2!,s~1!ZZ2S) Mi DYn21

s~2!,s~n!
¯Y2

s~2!,s~3!

3S) Mi DYn21
s~1!,s~n!

¯Y1
s~1!,s~2!

5ZZ2Y1
s~2!,s~1!S) Mi DYn21

s~2!,s~n!
¯Y2

s~2!,s~3!

3S) Mi DYn21
s~1!,s~n!

¯ Y1
s~1!,s~2! . ~C9!

Thus, the productsAB andBA share the same prefactorZZ2 ,
so that if AB5BA is true whenzi50 ~the case studied by
Yang @29#!, thenAB5BA is true for arbitrary values of the
$zi%. As it is a well known fact that the operators commute
Yang’s case, we could stop the proof here. However,
completeness, let us properly finish it.

We continue the simplification ofAB; using~C1!, we can
have the whole first group of matricesYk in AB go to the
right through the second productM1¯Mn21 . We get

AB5ZZ2S) Mi D 2

Yn22
s~1!,s~n!

¯Y1
s~1!,s~3!

3Yn21
s~2!,s~n!

¯Y2
s~2!,s~3! . ~C10!

We do the same for the productBA,

BA5ZZ2Y1
s~2!,s~1!S) Mi D 2

Yn22
s~2!,s~n!

¯Y1
s~2!,s~3!

3Yn21
s~1!,s~n!

¯Y1
s~1!,s~2! . ~C11!

Using
l

y

9

04110
r

Y1
i , j~M1¯Mn21!25~M1¯Mn21!2Yn21

i , j , ~C12!

which can be deduced from the properties~B7! of the matri-
cesMk , we get

BA5ZZ2S) Mi D 2

Yn21
s~2!,s~1!Yn22

s~2!,s~n!
¯

3Y1
s~2!,s~3!Yn21

s~1!,s~n!
¯Y1

s~1!,s~2! . ~C13!

AB andBA have the same prefactorZZ2()Mi)
2; we need to

show that the two products of matricesYk are equal. We
proceed by induction: It is clear forn51 ~or n52) and we
assume it is true forn21. In both products, we ‘‘move’’ the
matricesYn21 to the left. We get

AB5ZZ2S) Mi D 2

Yn22
s~1!,s~n!Yn21

s~2!,s~n!Yn23
s~1!,s~n21!

¯

3Y1
s~1!,s~3!3Yn22

s~2!,s~n21!
¯Y2

s~2!,s~3! , ~C14!

and, using Eq.~B10!,

BA5ZZ2S) Mi D 2

Yn21
s~2!,s~1!Yn22

s~2!,s~n!Yn21
s~1!,s~n!

3Yn23
s~2!,s~n21!

¯Y1
s~2!,s~3!3Yn22

s~1!,s~n21!
¯Y1

s~1!,s~2!

5ZZ2S) Mi D 2

Yn22
s~1!,s~n!Yn21

s~2!,s~n!Yn22
s~2!,s~1!

3Yn23
s~2!,s~n21!

¯Y1
s~2!,s~3!3Yn22

s~1!,s~n21!
¯Y1

s~1!,s~2! .

~C15!

Leaving aside the common prefixZZ2()Mi)
2, the products

AB and BA start with the same twoY matrices, and what
remains are the products ofY matrices in the expressions o
AB and BA at ordern21. This, by induction, proves tha
AB5BA.

Finally, putting everything together, we have shown th
the n! properties~B12! obtained from the boundary cond
tions are self-compatible.
ev.
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